10707
Deep Learning
Russ Salakhutdinov

Machine Learning Department
rsalakhu@cs.cmu.edu

http://www.cs.cmu.edu/~rsalakhu/10707/

Convolutional Networks |

Used Resources

e Disclaimer: Much of the material in this lecture was borrowed from
Hugo Larochelle’s class on Neural Networks:

https://sites.google.com/site/deeplearningsummerschool2016/

e Some tutorial slides were borrowed from Rob Fergus’ CIFAR
tutorial on ConvNets:
https://sites.google.com/site/deeplearningsummerschool2016/speakers

e Some slides were borrowed from Marc'Aurelio Ranzato’s
CVPR 2014 tutorial on Convolutional Nets
https://sites.google.com/site/Isvrtutorialcvpr14/home/deeplearning

Computer Vision

e Design algorithms that can process visual data to
accomplish a given task:

> For example, object recognition: Given an input image, identify

which object it contains

| 12 pixels

* “sun flower”

| 50 pixels

Computer Vision

e Our goal is to design neural networks that are specifically
adapted for such problems

> Must deal with very high-dimensional inputs: 150 x 150 pixels =
22500 inputs, or 3 x 22500 if RGB pixels

> Can exploit the 2D topology of pixels (or 3D for video data)

» Can build in invariance to certain variations: translation,

illumination, etc.

e Convolutional networks leverage these ideas

Local connectivity

Parameter sharing

Convolution

YV V. V]V

Pooling / subsampling hidden units

Local Connectivity

e Use a local connectivity of hidden units

> Each hidden unit is connected only to a
sub-region (patch) of the input image

» Itis connected to all channels: 1 if
grayscale, 3 (R, G, B) if color image

* Why local connectivity?

> Fully connected layer has a lot of
parameters to fit, requires a lot of data

TI = receptive field

> Spatial correlation is local

Local Connectivity

e Units are connected to all channels:

> 1 channel if grayscale image,
> 3 channels (R, G, B) if color image

Local Connectivity

e Example: 200x200 image, 40K hidden units, ~2B parameters!

> Spatial correlation is local
> Too many parameters, will require a
lot of training datal

Local Connectivity

e Example: 200x200 image, 40K hidden units, filter size 10x10,
4M parameters!

This parameterization is good
when input image is registered

Computer Vision

e Our goal is to design neural networks that are specifically
adapted for such problems

> Must deal with very high-dimensional inputs: 150 x 150 pixels =
22500 inputs, or 3 x 22500 if RGB pixels

> Can exploit the 2D topology of pixels (or 3D for video data)

» Can build in invariance to certain variations: translation,

illumination, etc.

e Convolutional networks leverage these ideas

> Local connectivity

> Parameter sharing

> Convolution

> Pooling / subsampling hidden units

Parameter Sharing

e Share matrix of parameters across some units

> Units that are organized into the ‘feature map” share parameters

> Hidden units within a feature map cover different positions in the
image

feature map | feature map 2 feature map 3

Q0. Q0000 O
\‘\ 1

|
same color \
- ' W is the matrix connecting
same matl.’lx of the /1" input channel with the
connection

jth feature map .

Parameter Sharing

e Why parameter sharing?

> Reduces even more the number of parameters

> WIll extract the same features at every position (features are
“equivariant”)

feature map | feature map 2 feature map 3

Q0. Q0000 O
N

‘)

same color

S

same matrix of
connection

W is the matrix connecting
the it input channel with the

jth feature map .

Parameter Sharing

e Share matrix of parameters across certain units

» Convolutions with certain kernels

Computer Vision

e Our goal is to design neural networks that are specifically
adapted for such problems

> Must deal with very high-dimensional inputs: 150 x 150 pixels =
22500 inputs, or 3 x 22500 if RGB pixels

> Can exploit the 2D topology of pixels (or 3D for video data)

» Can build in invariance to certain variations: translation,

illumination, etc.

e Convolutional networks leverage these ideas

> Local connectivity

> Parameter sharing

> Convolution

> Pooling / subsampling hidden units

Parameter Sharing

e Each feature map forms a 2D grid of features

> can be computed with a discrete convolution () of a kernel
matrix k; which is the hidden weights matrix W), with its rows and
columns flipped

Yi = 9, tanh(z kij * x;)

- X;is the it" channel of input

Convolutions

- k,-j is the convolution kernel

- g is a learned scaling factor

- g;is the hidden layer

Input Image

can add bias
Jarret et al. 2009

Discrete Convolution

e The convolution of an image x with a kernel k is computed as
follows:

(x x k), E :$z+p3+q r—p,r—q

e Example:

Discrete Convolution

* The convolution of an image x with a kernel k is computed as
follows:

(5[3 * k)ij — Z 5’3i+p,j+qkr—p,r—q

e Example:

Discrete Convolution

* The convolution of an image x with a kernel k is computed as
follows:

(x x k), E :$z+p3+q r—p,r—q

e Example: 1x0+0.5x80+0.25x20+0x40=45

1
:

Discrete Convolution

* The convolution of an image x with a kernel k is computed as
follows:

(x x k), E :$z+p3+q r—p,r—q

e Example: 1x80+0.5x40+0.25x40+0x0=110

Discrete Convolution

* The convolution of an image x with a kernel k is computed as
follows:

(x x k), E :37%+p3+q r—p,r—q

e Example: 1x20+0.5x40+0.25x0+0x0=40

110
. —
k

Discrete Convolution

* The convolution of an image x with a kernel k is computed as
follows:

(x x k), E :37%+p3+q r—p,r—q

e Example: 1x40+0.5x0+0.25x0+0x40=40

110
. =
k

Discrete Convolution

* Pre-activations from channel x; into feature map y; can be
computed by:

> getting the convolution kernel where k; =VT/ij from the
connection matrix W,

> applying the convolution x; - kij

e This is equivalent to computing the discrete correlation
of x; with W,

Example

e |llustration:

€X * :le,;j, where W@'j — W,,;j

Example

e With a non-linearity, we get a detector of a feature at any
position in the image:

XL * :le,;j, where W@'j — W,,;j

Sigm(0.0Z Ly * /{7;7' -4)

Example

e Can use “zero padding” to allow going over the borders (*)

Example

M

£

101 HIRAS
*|-101| = ¥ 1
-101 (!

Multiple Feature Maps

e Example: 200x200 image, 100 filters,

Computer Vision

e Our goal is to design neural networks that are specifically
adapted for such problems

> Must deal with very high-dimensional inputs: 150 x 150 pixels =
22500 inputs, or 3 x 22500 if RGB pixels

> Can exploit the 2D topology of pixels (or 3D for video data)

» Can build in invariance to certain variations: translation,

illumination, etc.

e Convolutional networks leverage these ideas

Local connectivity
Parameter sharing

Convolution

vV IV V V

Pooling / subsampling hidden units

Pooling

e Pool hidden units in same neighborhood

> pooling is performed in non-overlapping neighborhoods
(subsampling)

- X is the it" channel of input
Yigk = MaXLj j4+p k+q

?

- X;;x is value of the i feature
map at position j,k

Pooling / Subsampling - pis vertical index in local
neighborhood

- is horizontal index in local
neighborhood

- Yix Is pooled / subsampled
layer

Jarret et al. 2009

Pooling

e Pool hidden units in same neighborhood

> an alternative to “max” pooling is “average” pooling

Yijk = LQ Z Ti j+p k+q - X is the it channel of input
e - X;jx is value of the it" feature
map at position j,k
Pooling / Subsampling - pis vertical index in local
neighborhood

- is horizontal index in local
neighborhood

- Yix Is pooled / subsampled
layer

- m is the neighborhood
Jarret et al. 2009 height/width

Example: Pooling

e |llustration of pooling/subsampling operation

Ny 0.19 0.02
Max

Ny 0.19 019 0.02

0.02 ‘ 0.02 0.02

0.02 0.02 0.02

MaxX

e Why pooling?

> Introduces invariance to local translations

> Reduces the number of hidden units in hidden layer

Example: Pooling

can we make the detection robust
to the exact location of the eye?

A

Example: Pooling

> By “pooling” (e.g., taking max) filter
responses at different locations we
gain robustness to the exact spatial
location of features.

Translation Invariance

e |[llustration of local translation invariance

> both images result in the same feature map after pooling/

subsampling

0.19 0.19

255
ods - ke
255

Convolutional Network

e Convolutional neural network alternates between the
convolutional and pooling layers

Layer 3
256@6x6 Layer 4

256@1x1 OutPut

101

Layer 1

) 64x75x75 Layer 2
input 64@14x14
83x83

9x9
9x9 i
X . 10x10 pooling, .onvolution _I 6x6 pooling fully
convolution :
5x35 subsampling (4096 kernels) connected
(64 kernels) 4x4 subsamp

From Yann LeCun’s slides

Convolutional Network

 For classification: Output layer is a regular, fully connected layer
with softmax non-linearity

> Output provides an estimate of the conditional probability of each

class

e The network is trained by stochastic gradient descent

> Backpropagation is used similarly as in a fully connected network
> We have seen how to pass gradients through element-wise

activation function
> We also need to pass gradients through the convolution operation

and the pooling operation

Gradient of Convolutional Layer

e Let [be the loss function

» For max pooling operation Y; 5 = MaXL; j+p k+q ,the
gradient for x;, is ’
Vi, ! =0, except for Vmi,ﬁp,,kﬂ,l = Vy..!
where p’, q° = argmax X; ., k+q

> In other words, only the “winning” units in layer x get the gradient
from the pooled layer

1
> For the average operation Yijk = m2 in,j+p,k+q , the
gradient for x;, is ! P4

Vel = ﬁupsample(vyl)

where upsample inverts subsampling

Convolutional Network

e Convolutional neural network alternates between the
convolutional and pooling layers

Layer 3
256@6x6 Layer 4

256@1x1 OutPut

101

Layer 1

, 64x75x75 Layer 2
1nput 64@14x14
83x83

9x9
9x9 i
X o 10x10 pooling, ¢onvolution _l 6x6 pooling fully
convolution '
5x5 subsampling (4096 kernels) connected
(64 kernels) 4x4 subsamp

e Need to introduce other operations that can improve object
recognition.

Rectification

« Rectification layer: y;, = |x;

> introduces invariance to the sign of the
unit in the previous layer

» for instance, loss of information of
whether an edge is
black-to-white or white-to-black

Rectification

Vv

Local Contrast Normalization

e Perform local contrast normalization

Local average

Yijk = ’Uz'jk/maX(C, Ujk)
Local stdev

Contrast
Normalization

I S TN 1/2 | Z _
Ojk _I(Zipq wpqvi,j+p,k—|—q) / : Wpq = 1

where c is a small constant to prevent division by 0

> reduces unit’s activation if neighbors are also active

> creates competition between feature maps
> scales activations at each layer better for learning

Local Contrast Normalization

e Perform local contrast normalization

> Local mean=0, Local std. = 1, “Local” is 7x7 Gaussian

Feature Maps after
Feature Maps Contrast Normalization

Convolutional Network

e These operations are inserted after the convolutions and before

the pooling

Convolutions Rectification Nogrgghrzaasttion Pooling / Subsampling

Input Image

Jarret et al. 2009

Rectification
+
Contrast
Normalization

Filter Bank Pooling

K. Kavukcuoglu

Remember Batch Normalization

Input: Values of z over a mini-batch: B = {z1. . };
Parameters to be learned: v, 3
Output: {y; = BN, g(z;)}

1 m
1B — Z Z; // mini-batch mean
i=1
1 m
0% — Z(a:Z — ug)? // mini-batch variance
i=1
T; Ti B // normalize
o Noste .
| Yi < 7Z; + B = BN, g(;) | // scale and shift

Learned linear transformation to adapt to non-linear
activation function (y and 3 are trained)

