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Used Resources 

•  Some tutorial slides were borrowed from Rob Fergus’ CIFAR 
tutorial on ConvNets: 
  https://sites.google.com/site/deeplearningsummerschool2016/speakers 

•  Disclaimer: Much of the material in this lecture was borrowed from 
Hugo Larochelle’s class on Neural Networks: 
https://sites.google.com/site/deeplearningsummerschool2016/ 

•  Some slides were borrowed from Marc'Aurelio Ranzato’s 
CVPR 2014 tutorial on Convolutional Nets 
https://sites.google.com/site/lsvrtutorialcvpr14/home/deeplearning 



Computer Vision  
•  Design algorithms that can process visual data to 
accomplish a given task:  

Ø  For example, object recognition: Given an input image, identify 

which object it contains 



Computer Vision 
•  Our goal is to design neural networks that are specifically 
adapted for such problems 

Ø  Must deal with very high-dimensional inputs: 150 x 150 pixels = 

22500 inputs, or 3 x 22500 if RGB pixels  

Ø  Can exploit the 2D topology of pixels (or 3D for video data) 

Ø  Can build in invariance to certain variations: translation, 

illumination, etc.   

•  Convolutional networks leverage these ideas 

Ø  Local connectivity 

Ø  Parameter sharing 

Ø  Convolution 

Ø  Pooling / subsampling hidden units 



Local Connectivity 
•  Use a local connectivity of hidden units 

Ø  Each hidden unit is connected only to a 
sub-region (patch) of the input image 

Ø  It is connected to all channels: 1 if 
grayscale, 3 (R, G, B) if color image 

•  Why local connectivity? 

Ø  Fully connected layer has a lot of 
parameters to fit, requires a lot of data 

Ø  Spatial correlation is local 



Local Connectivity 
•  Units are connected to all channels: 

Ø  1 channel if grayscale image,  
Ø  3 channels (R, G, B) if color image 



Local Connectivity 
•  Example:  200x200 image, 40K hidden units, ~2B parameters! 

Ø  Spatial correlation is local 
Ø  Too many parameters, will require a 

lot of training data! 



Local Connectivity 
•  Example:  200x200 image, 40K hidden units, filter size 10x10, 
4M parameters! 

Ø  This parameterization is good 
when input image is registered 



Computer Vision 
•  Our goal is to design neural networks that are specifically 
adapted for such problems 

Ø  Must deal with very high-dimensional inputs: 150 x 150 pixels = 

22500 inputs, or 3 x 22500 if RGB pixels  

Ø  Can exploit the 2D topology of pixels (or 3D for video data) 

Ø  Can build in invariance to certain variations: translation, 

illumination, etc.   

•  Convolutional networks leverage these ideas 

Ø  Local connectivity 

Ø  Parameter sharing 

Ø  Convolution 

Ø  Pooling / subsampling hidden units 



Parameter Sharing  
•  Share matrix of parameters across some units 

Ø  Units that are organized into the ‘feature map” share parameters 

Ø  Hidden units within a feature map cover different positions in the 
image  

Wij	is	the	matrix	connecting	
the	ith input	channel	with	the	
jth feature	map	

same color 
=  

same matrix of 
connection	



Parameter Sharing  
•  Why parameter sharing? 

Ø  Reduces even more the number of parameters 

Ø  Will extract the same features at every position (features are 
‘‘equivariant’’) 

Wij	is	the	matrix	connecting	
the	ith input	channel	with	the	
jth feature	map	

same color 
=  

same matrix of 
connection	



Parameter Sharing 
•  Share matrix of parameters across certain units 

Ø  Convolutions with certain kernels 



Computer Vision 
•  Our goal is to design neural networks that are specifically 
adapted for such problems 

Ø  Must deal with very high-dimensional inputs: 150 x 150 pixels = 

22500 inputs, or 3 x 22500 if RGB pixels  

Ø  Can exploit the 2D topology of pixels (or 3D for video data) 

Ø  Can build in invariance to certain variations: translation, 

illumination, etc.   

•  Convolutional networks leverage these ideas 

Ø  Local connectivity 

Ø  Parameter sharing 

Ø  Convolution 

Ø  Pooling / subsampling hidden units 



Parameter Sharing  
•  Each feature map forms a 2D grid of features 

Ø  can be computed with a discrete convolution (   ) of a kernel 
matrix kij which is the hidden weights matrix Wij with its rows and 
columns flipped 

Computer vision
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Abstract

Math for my slides “Computer vision”.

• H X ⇤

1

Filter Bank Layer - FCSG: the input of a filter bank
layer is a 3D array with n1 2D feature maps of size n2×n3.
Each component is denoted xijk, and each feature map is
denoted xi. The output is also a 3D array, y composed of
m1 feature maps of size m2 ×m3. A filter in the filter bank
kij has size l1 × l2 and connects input feature map xi to
output feature map yj . The module computes:

yj = gj tanh(
∑

i

kij ∗ xi) (1)

where tanh is the hyperbolic tangent non-linearity, ∗ is the
2D discrete convolution operator and gj is a trainable scalar
coefficient. By taking into account the borders effect, we
have m1 = n1− l1 +1, and m2 = n2− l2 +1. This layer is
denoted by FCSG because it is composed of a set of convo-
lution filters (C), a sigmoid/tanh non-linearity (S), and gain
coefficients (G). In the following, superscripts are used to
denote the size of the filters. For instance, a filter bank layer
with 64 filters of size 9x9, is denoted as: 64F 9×9

CSG.
Rectification Layer - Rabs: This module simply applies
the absolute value function to all the components of its in-
put: yijk = |xijk|. Several rectifying non-linearities were
tried, including the positive part, and produced similar re-
sults.
Local Contrast Normalization Layer - N : This module
performs local subtractive and divisive normalizations, en-
forcing a sort of local competition between adjacent fea-
tures in a feature map, and between features at the same
spatial location in different feature maps. The subtrac-
tive normalization operation for a given site xijk com-
putes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q, where wpq is

a Gaussian weighting window (of size 9x9 in our exper-
iments) normalized so that

∑
ipq wpq = 1. The divisive

normalization computes yijk = vijk/max(c,σjk) where
σjk = (

∑
ipq wpq.v2

i,j+p,k+q)
1/2. For each sample, the

constant c is set to the mean(σjk) in the experiments. The
denominator is the weighted standard deviation of all fea-
tures over a spatial neighborhood. The local contrast nor-
malization layer is inspired by computational neuroscience
models [24, 20].
Average Pooling and Subsampling Layer - PA: The pur-
pose of this layer is to build robustness to small distor-
tions, playing the same role as the complex cells in mod-
els of visual perception. Each output value is yijk =∑

pq wpq.xi,j+p,k+q, where wpq is a uniform weighting
window (“boxcar filter”). Each output feature map is then
subsampled spatially by a factor S horizontally and verti-
cally. In this work, we do not consider pooling over fea-
ture types, but only over the spatial dimensions. Therefore,
the numbers of input and output feature maps are identical,
while the spatial resolution is decreased. Disregarding the
border effects in the boxcar averaging, the spatial resolution
is decreased by the down-sampling ratio S in both direc-
tions, denoted by a superscript, so that, an average pooling

Figure 1. A example of feature extraction stage of the type FCSG−

Rabs − N − PA. An input image (or a feature map) is passed
through a non-linear filterbank, followed by rectification, local

contrast normalization and spatial pooling/sub-sampling.

layer with 4x4 down-sampling is denoted: P 4×4
A .

Max-Pooling and Subsampling Layer - PM : building lo-
cal invariance to shift can be performed with any symmetric
pooling operation. The max-pooling module is similar to
the average pooling, except that the average operation is re-
placed by a max operation. In our experiments, the pooling
windows were non-overlapping. A max-pooling layer with
4x4 down-sampling is denoted P 4×4

M .

2.1. Combining Modules into a Hierarchy
Different architectures can be produced by cascading the

above-mentioned modules in various ways. An architec-
ture is composed of one or two stages of feature extraction,
each of which is formed by cascading a filtering layer with
different combinations of rectification, normalization, and
pooling. Recognition architectures are composed of one or
two such stages, followed by a classifier, generally a multi-
nomial logistic regression.
FCSG − PA This is the basic building block of tra-
ditional convolutional networks, alternating tanh-squashed
filter banks with average down-sampling layers [14, 10].
A complete convolutional network would have several se-
quences of “FCSG - PA” followed by by a linear classifier.
FCSG − Rabs − PA The tanh-squashed filter bank is
followed by an absolute value non-linearity, and by an av-
erage down-sampling layer.
FCSG − Rabs − N − PA The tanh-squashed filter bank
is followed by an absolute value non-linearity, by a lo-
cal contrast normalization layer and by an average down-
sampling layer.
FCSG − PM This is also a typical building block of con-
volutional networks, as well as the basis of the HMAX and
other architectures [28, 25], which alternate tanh-squashed
filter banks with max-pooling layers.

3. Training Protocol
Given a particular architecture, a number of training pro-

tocols have been considered and tested. Each protocol is
identified by a letter R,U,R+, or U+. A single letter (e.g.
R) indicates an architecture with a single stage of feature
extraction, followed by a classifier, while a double letter
(e.g. RR) indicates an architecture with two stages of fea-
ture extraction followed by a classifier:
Random Features and Supervised Classifier - R and
RR: The filters in the feature extraction stages are set to
random values and kept fixed (no feature learning takes
place), and the classifier stage is trained in supervised mode.

Filter Bank Layer - FCSG: the input of a filter bank
layer is a 3D array with n1 2D feature maps of size n2×n3.
Each component is denoted xijk, and each feature map is
denoted xi. The output is also a 3D array, y composed of
m1 feature maps of size m2 ×m3. A filter in the filter bank
kij has size l1 × l2 and connects input feature map xi to
output feature map yj . The module computes:

yj = gj tanh(
∑

i

kij ∗ xi) (1)

where tanh is the hyperbolic tangent non-linearity, ∗ is the
2D discrete convolution operator and gj is a trainable scalar
coefficient. By taking into account the borders effect, we
have m1 = n1− l1 +1, and m2 = n2− l2 +1. This layer is
denoted by FCSG because it is composed of a set of convo-
lution filters (C), a sigmoid/tanh non-linearity (S), and gain
coefficients (G). In the following, superscripts are used to
denote the size of the filters. For instance, a filter bank layer
with 64 filters of size 9x9, is denoted as: 64F 9×9

CSG.
Rectification Layer - Rabs: This module simply applies
the absolute value function to all the components of its in-
put: yijk = |xijk|. Several rectifying non-linearities were
tried, including the positive part, and produced similar re-
sults.
Local Contrast Normalization Layer - N : This module
performs local subtractive and divisive normalizations, en-
forcing a sort of local competition between adjacent fea-
tures in a feature map, and between features at the same
spatial location in different feature maps. The subtrac-
tive normalization operation for a given site xijk com-
putes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q, where wpq is

a Gaussian weighting window (of size 9x9 in our exper-
iments) normalized so that

∑
ipq wpq = 1. The divisive

normalization computes yijk = vijk/max(c,σjk) where
σjk = (

∑
ipq wpq.v2

i,j+p,k+q)
1/2. For each sample, the

constant c is set to the mean(σjk) in the experiments. The
denominator is the weighted standard deviation of all fea-
tures over a spatial neighborhood. The local contrast nor-
malization layer is inspired by computational neuroscience
models [24, 20].
Average Pooling and Subsampling Layer - PA: The pur-
pose of this layer is to build robustness to small distor-
tions, playing the same role as the complex cells in mod-
els of visual perception. Each output value is yijk =∑

pq wpq.xi,j+p,k+q, where wpq is a uniform weighting
window (“boxcar filter”). Each output feature map is then
subsampled spatially by a factor S horizontally and verti-
cally. In this work, we do not consider pooling over fea-
ture types, but only over the spatial dimensions. Therefore,
the numbers of input and output feature maps are identical,
while the spatial resolution is decreased. Disregarding the
border effects in the boxcar averaging, the spatial resolution
is decreased by the down-sampling ratio S in both direc-
tions, denoted by a superscript, so that, an average pooling

Figure 1. A example of feature extraction stage of the type FCSG−

Rabs − N − PA. An input image (or a feature map) is passed
through a non-linear filterbank, followed by rectification, local

contrast normalization and spatial pooling/sub-sampling.

layer with 4x4 down-sampling is denoted: P 4×4
A .

Max-Pooling and Subsampling Layer - PM : building lo-
cal invariance to shift can be performed with any symmetric
pooling operation. The max-pooling module is similar to
the average pooling, except that the average operation is re-
placed by a max operation. In our experiments, the pooling
windows were non-overlapping. A max-pooling layer with
4x4 down-sampling is denoted P 4×4

M .

2.1. Combining Modules into a Hierarchy
Different architectures can be produced by cascading the

above-mentioned modules in various ways. An architec-
ture is composed of one or two stages of feature extraction,
each of which is formed by cascading a filtering layer with
different combinations of rectification, normalization, and
pooling. Recognition architectures are composed of one or
two such stages, followed by a classifier, generally a multi-
nomial logistic regression.
FCSG − PA This is the basic building block of tra-
ditional convolutional networks, alternating tanh-squashed
filter banks with average down-sampling layers [14, 10].
A complete convolutional network would have several se-
quences of “FCSG - PA” followed by by a linear classifier.
FCSG − Rabs − PA The tanh-squashed filter bank is
followed by an absolute value non-linearity, and by an av-
erage down-sampling layer.
FCSG − Rabs − N − PA The tanh-squashed filter bank
is followed by an absolute value non-linearity, by a lo-
cal contrast normalization layer and by an average down-
sampling layer.
FCSG − PM This is also a typical building block of con-
volutional networks, as well as the basis of the HMAX and
other architectures [28, 25], which alternate tanh-squashed
filter banks with max-pooling layers.

3. Training Protocol
Given a particular architecture, a number of training pro-

tocols have been considered and tested. Each protocol is
identified by a letter R,U,R+, or U+. A single letter (e.g.
R) indicates an architecture with a single stage of feature
extraction, followed by a classifier, while a double letter
(e.g. RR) indicates an architecture with two stages of fea-
ture extraction followed by a classifier:
Random Features and Supervised Classifier - R and
RR: The filters in the feature extraction stages are set to
random values and kept fixed (no feature learning takes
place), and the classifier stage is trained in supervised mode.

-  xi is the ith channel of input 
-  kij  is the convolution kernel 

-  gj  is a learned scaling factor 

-  gj is the hidden layer 

Jarret et al. 2009 
can add bias  



Discrete Convolution  
•  The convolution of an image x with a kernel k is computed as 
follows: 

•  Example: 

(x ⇤ k)ij =
X

pq

xi+p,j+qkr�p,r�q



Discrete Convolution  
•  The convolution of an image x with a kernel k is computed as 
follows: 

•  Example: 

(x ⇤ k)ij =
X

pq

xi+p,j+qkr�p,r�q

k̃ = k with rows and columns flipped 



Discrete Convolution  
•  The convolution of an image x with a kernel k is computed as 
follows: 

•  Example: 

(x ⇤ k)ij =
X

pq

xi+p,j+qkr�p,r�q

1 x 0 + 0.5 x 80 + 0.25 x 20 + 0 x 40 = 45 



Discrete Convolution  
•  The convolution of an image x with a kernel k is computed as 
follows: 

•  Example: 

(x ⇤ k)ij =
X

pq

xi+p,j+qkr�p,r�q

1 x 80 + 0.5 x 40 + 0.25 x 40 + 0 x 0 = 110 



Discrete Convolution  
•  The convolution of an image x with a kernel k is computed as 
follows: 

•  Example: 

(x ⇤ k)ij =
X

pq

xi+p,j+qkr�p,r�q

1 x 20 + 0.5 x 40 + 0.25 x 0 + 0 x 0 = 40 



Discrete Convolution  
•  The convolution of an image x with a kernel k is computed as 
follows: 

•  Example: 

(x ⇤ k)ij =
X

pq

xi+p,j+qkr�p,r�q

1 x 40 + 0.5 x 0 + 0.25 x 0 + 0 x 40 = 40 



Discrete Convolution  
•  Pre-activations from channel xi  into feature map yj can be 
computed by: 

Ø  getting the convolution kernel where kij =Wij from the 
connection matrix Wij 

Ø  applying the convolution xi * kij  

~ 

•  This is equivalent to computing the discrete correlation  
of xi with Wij 



Example 
•  Illustration:  

x ⇤ kij , where Wij = W̃ij

Example 

●  Calcul%d’une%couche%«%simple%cell%»%
  première%étape%:%calcul%de%la%convolu7on%%
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couche)d’entrée) couche)«)simple)cell)»)



Example 
•  With a non-linearity, we get a detector of a feature at any 
position in the image:  

x ⇤ kij , where Wij = W̃ij

Example 

●  Calcul%d’une%couche%«%simple%cell%»%
  première%étape%:%calcul%de%la%convolu7on%%

IFT%615% Hugo%Larochelle% 47%

%%%%%
% 

%%%%%
% 

X

W

�X W

0% 0.5%
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couche)d’entrée) couche)«)simple)cell)»)



Example 
•  Can use ‘‘zero padding’’ to allow going over the borders ( * ) 



Example 



Multiple Feature Maps 
•  Example:  200x200 image, 100 filters, 
filter size 10x10, 10K parameters 



Computer Vision 
•  Our goal is to design neural networks that are specifically 
adapted for such problems 

Ø  Must deal with very high-dimensional inputs: 150 x 150 pixels = 

22500 inputs, or 3 x 22500 if RGB pixels  

Ø  Can exploit the 2D topology of pixels (or 3D for video data) 

Ø  Can build in invariance to certain variations: translation, 

illumination, etc.   

•  Convolutional networks leverage these ideas 

Ø  Local connectivity 

Ø  Parameter sharing 

Ø  Convolution 

Ø  Pooling / subsampling hidden units 



Pooling 
•  Pool hidden units in same neighborhood 

Ø  pooling is performed in non-overlapping neighborhoods 
(subsampling) 

-  xi is the ith channel of input 
-  xi,j,k is value of the ith feature 

map at position j,k 
-  p is vertical index in local 

neighborhood 
-  q is horizontal index in local 

neighborhood 
-  yijk is pooled / subsampled 

layer 

Jarret et al. 2009 
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Math for my slides “Computer vision”.

• H X ⇤

•
yijk = max

p,q
xi,j+p,k+q

•
yijk =

1

M

X

p,q

xi,j+p,k+q

1



Pooling 
•  Pool hidden units in same neighborhood 

Ø  an alternative to ‘‘max’’ pooling is ‘‘average’’ pooling  

-  xi is the ith channel of input 
-  xi,j,k is value of the ith feature 

map at position j,k 
-  p is vertical index in local 

neighborhood 
-  q is horizontal index in local 

neighborhood 
-  yijk is pooled / subsampled 

layer 
-  m is the neighborhood    

height/width Jarret et al. 2009 

Computer vision
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Math for my slides “Computer vision”.

• H X ⇤

•
yijk = max

p,q
xi,j+p,k+q

•
yijk =

1

m2

X

p,q

xi,j+p,k+q

• vijk = xijk �
P

ipq wpqxi,j+p,k+q

• yijk = vijk/max(c,�jk)

• �jk = (
P

ipq wpqv2i,j+p,k+q)
1/2

1



Example: Pooling 
•  Illustration of pooling/subsampling operation 

•  Why pooling? 

Ø  Introduces invariance to local translations 

Ø  Reduces the number of hidden units in hidden layer  

Example 

●  Calcul%d’une%couche%«%complex%cell%»%
  maximum%dans%plusieurs%segments%

IFT%615% Hugo%Larochelle% 49%
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Logis6c(%(%%%%%%%%%%%%%n%200%)%/%50%)%
couche)«)complex)cell)»)

max% max%

max%max%



Example: Pooling 

Ø  can we make the detection robust 
to the exact location of the eye? 



Example: Pooling 

Ø  By “pooling” (e.g., taking max) filter 
responses at different locations we 
gain robustness to the exact spatial 
location of features. 



Translation Invariance 
•  Illustration of local translation invariance 

Ø  both images result in the same feature map after pooling/

subsampling 



Convolutional Network  
•  Convolutional neural network alternates between the 
convolutional and pooling layers 

From Yann LeCun’s slides 



•  For classification: Output layer is a regular, fully connected layer 
with softmax non-linearity 

Ø  Output provides an estimate of the conditional probability of each 

class 

•  The network is trained by stochastic gradient descent 

Ø  Backpropagation is used similarly as in a fully connected network 

Ø  We have seen how to pass gradients through element-wise 

activation function 

Ø  We also need to pass gradients through the convolution operation 

and the pooling operation 

Convolutional Network  



•  Let     be the loss function 

Gradient of Convolutional Layer 
l

Ø  For max pooling operation                                             , the 
gradient for xijk is 

       where p’, q’ = argmax xi,j+p,k+q 

Computer vision
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Math for my slides “Computer vision”.

• H X ⇤

•
yijk = max

p,q
xi,j+p,k+q

•
yijk =

1

M

X

p,q

xi,j+p,k+q

1

rxijk l = 0, except for rxi,j+p0,k+q0 l = ryijk l

Ø  In other words, only the ‘‘winning’’ units in layer x get the gradient 
from the pooled layer 

Ø  For the average operation                                             , the 
gradient for xijk is 

      where upsample inverts subsampling 
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Math for my slides “Computer vision”.

• H X ⇤

•
yijk = max

p,q
xi,j+p,k+q

•
yijk =

1

m2

X

p,q

xi,j+p,k+q

• vijk = xijk �
P

ipq wpqxi,j+p,k+q

• yijk = vijk/max(c,�jk)

• �jk = (
P

ipq wpqv2i,j+p,k+q)
1/2

1

rxl =
1

m2
upsample(ryl)



Convolutional Network  
•  Convolutional neural network alternates between the 
convolutional and pooling layers 

•  Need to introduce other operations that can improve object 
recognition.  



Rectification 
•  Rectification layer:  yijk = |xijk| 

Ø  introduces invariance to the sign of the 
unit in the previous layer 

Ø  for instance, loss of information of 
whether an edge is  
black-to-white or white-to-black 

Filter Bank Layer - FCSG: the input of a filter bank
layer is a 3D array with n1 2D feature maps of size n2×n3.
Each component is denoted xijk, and each feature map is
denoted xi. The output is also a 3D array, y composed of
m1 feature maps of size m2 ×m3. A filter in the filter bank
kij has size l1 × l2 and connects input feature map xi to
output feature map yj . The module computes:

yj = gj tanh(
∑

i

kij ∗ xi) (1)

where tanh is the hyperbolic tangent non-linearity, ∗ is the
2D discrete convolution operator and gj is a trainable scalar
coefficient. By taking into account the borders effect, we
have m1 = n1− l1 +1, and m2 = n2− l2 +1. This layer is
denoted by FCSG because it is composed of a set of convo-
lution filters (C), a sigmoid/tanh non-linearity (S), and gain
coefficients (G). In the following, superscripts are used to
denote the size of the filters. For instance, a filter bank layer
with 64 filters of size 9x9, is denoted as: 64F 9×9

CSG.
Rectification Layer - Rabs: This module simply applies
the absolute value function to all the components of its in-
put: yijk = |xijk|. Several rectifying non-linearities were
tried, including the positive part, and produced similar re-
sults.
Local Contrast Normalization Layer - N : This module
performs local subtractive and divisive normalizations, en-
forcing a sort of local competition between adjacent fea-
tures in a feature map, and between features at the same
spatial location in different feature maps. The subtrac-
tive normalization operation for a given site xijk com-
putes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q, where wpq is

a Gaussian weighting window (of size 9x9 in our exper-
iments) normalized so that

∑
ipq wpq = 1. The divisive

normalization computes yijk = vijk/max(c,σjk) where
σjk = (

∑
ipq wpq.v2

i,j+p,k+q)
1/2. For each sample, the

constant c is set to the mean(σjk) in the experiments. The
denominator is the weighted standard deviation of all fea-
tures over a spatial neighborhood. The local contrast nor-
malization layer is inspired by computational neuroscience
models [24, 20].
Average Pooling and Subsampling Layer - PA: The pur-
pose of this layer is to build robustness to small distor-
tions, playing the same role as the complex cells in mod-
els of visual perception. Each output value is yijk =∑

pq wpq.xi,j+p,k+q, where wpq is a uniform weighting
window (“boxcar filter”). Each output feature map is then
subsampled spatially by a factor S horizontally and verti-
cally. In this work, we do not consider pooling over fea-
ture types, but only over the spatial dimensions. Therefore,
the numbers of input and output feature maps are identical,
while the spatial resolution is decreased. Disregarding the
border effects in the boxcar averaging, the spatial resolution
is decreased by the down-sampling ratio S in both direc-
tions, denoted by a superscript, so that, an average pooling

Figure 1. A example of feature extraction stage of the type FCSG−

Rabs − N − PA. An input image (or a feature map) is passed
through a non-linear filterbank, followed by rectification, local

contrast normalization and spatial pooling/sub-sampling.

layer with 4x4 down-sampling is denoted: P 4×4
A .

Max-Pooling and Subsampling Layer - PM : building lo-
cal invariance to shift can be performed with any symmetric
pooling operation. The max-pooling module is similar to
the average pooling, except that the average operation is re-
placed by a max operation. In our experiments, the pooling
windows were non-overlapping. A max-pooling layer with
4x4 down-sampling is denoted P 4×4

M .

2.1. Combining Modules into a Hierarchy
Different architectures can be produced by cascading the

above-mentioned modules in various ways. An architec-
ture is composed of one or two stages of feature extraction,
each of which is formed by cascading a filtering layer with
different combinations of rectification, normalization, and
pooling. Recognition architectures are composed of one or
two such stages, followed by a classifier, generally a multi-
nomial logistic regression.
FCSG − PA This is the basic building block of tra-
ditional convolutional networks, alternating tanh-squashed
filter banks with average down-sampling layers [14, 10].
A complete convolutional network would have several se-
quences of “FCSG - PA” followed by by a linear classifier.
FCSG − Rabs − PA The tanh-squashed filter bank is
followed by an absolute value non-linearity, and by an av-
erage down-sampling layer.
FCSG − Rabs − N − PA The tanh-squashed filter bank
is followed by an absolute value non-linearity, by a lo-
cal contrast normalization layer and by an average down-
sampling layer.
FCSG − PM This is also a typical building block of con-
volutional networks, as well as the basis of the HMAX and
other architectures [28, 25], which alternate tanh-squashed
filter banks with max-pooling layers.

3. Training Protocol
Given a particular architecture, a number of training pro-

tocols have been considered and tested. Each protocol is
identified by a letter R,U,R+, or U+. A single letter (e.g.
R) indicates an architecture with a single stage of feature
extraction, followed by a classifier, while a double letter
(e.g. RR) indicates an architecture with two stages of fea-
ture extraction followed by a classifier:
Random Features and Supervised Classifier - R and
RR: The filters in the feature extraction stages are set to
random values and kept fixed (no feature learning takes
place), and the classifier stage is trained in supervised mode.



Local Contrast Normalization 
•  Perform local contrast normalization  

Ø  reduces unit’s activation if neighbors are also active 
Ø  creates competition between feature maps 
Ø  scales activations at each layer better for learning 
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Filter Bank Layer - FCSG: the input of a filter bank
layer is a 3D array with n1 2D feature maps of size n2×n3.
Each component is denoted xijk, and each feature map is
denoted xi. The output is also a 3D array, y composed of
m1 feature maps of size m2 ×m3. A filter in the filter bank
kij has size l1 × l2 and connects input feature map xi to
output feature map yj . The module computes:

yj = gj tanh(
∑

i

kij ∗ xi) (1)

where tanh is the hyperbolic tangent non-linearity, ∗ is the
2D discrete convolution operator and gj is a trainable scalar
coefficient. By taking into account the borders effect, we
have m1 = n1− l1 +1, and m2 = n2− l2 +1. This layer is
denoted by FCSG because it is composed of a set of convo-
lution filters (C), a sigmoid/tanh non-linearity (S), and gain
coefficients (G). In the following, superscripts are used to
denote the size of the filters. For instance, a filter bank layer
with 64 filters of size 9x9, is denoted as: 64F 9×9

CSG.
Rectification Layer - Rabs: This module simply applies
the absolute value function to all the components of its in-
put: yijk = |xijk|. Several rectifying non-linearities were
tried, including the positive part, and produced similar re-
sults.
Local Contrast Normalization Layer - N : This module
performs local subtractive and divisive normalizations, en-
forcing a sort of local competition between adjacent fea-
tures in a feature map, and between features at the same
spatial location in different feature maps. The subtrac-
tive normalization operation for a given site xijk com-
putes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q, where wpq is

a Gaussian weighting window (of size 9x9 in our exper-
iments) normalized so that

∑
ipq wpq = 1. The divisive

normalization computes yijk = vijk/max(c,σjk) where
σjk = (

∑
ipq wpq.v2

i,j+p,k+q)
1/2. For each sample, the

constant c is set to the mean(σjk) in the experiments. The
denominator is the weighted standard deviation of all fea-
tures over a spatial neighborhood. The local contrast nor-
malization layer is inspired by computational neuroscience
models [24, 20].
Average Pooling and Subsampling Layer - PA: The pur-
pose of this layer is to build robustness to small distor-
tions, playing the same role as the complex cells in mod-
els of visual perception. Each output value is yijk =∑

pq wpq.xi,j+p,k+q, where wpq is a uniform weighting
window (“boxcar filter”). Each output feature map is then
subsampled spatially by a factor S horizontally and verti-
cally. In this work, we do not consider pooling over fea-
ture types, but only over the spatial dimensions. Therefore,
the numbers of input and output feature maps are identical,
while the spatial resolution is decreased. Disregarding the
border effects in the boxcar averaging, the spatial resolution
is decreased by the down-sampling ratio S in both direc-
tions, denoted by a superscript, so that, an average pooling

Figure 1. A example of feature extraction stage of the type FCSG−

Rabs − N − PA. An input image (or a feature map) is passed
through a non-linear filterbank, followed by rectification, local

contrast normalization and spatial pooling/sub-sampling.

layer with 4x4 down-sampling is denoted: P 4×4
A .

Max-Pooling and Subsampling Layer - PM : building lo-
cal invariance to shift can be performed with any symmetric
pooling operation. The max-pooling module is similar to
the average pooling, except that the average operation is re-
placed by a max operation. In our experiments, the pooling
windows were non-overlapping. A max-pooling layer with
4x4 down-sampling is denoted P 4×4

M .

2.1. Combining Modules into a Hierarchy
Different architectures can be produced by cascading the

above-mentioned modules in various ways. An architec-
ture is composed of one or two stages of feature extraction,
each of which is formed by cascading a filtering layer with
different combinations of rectification, normalization, and
pooling. Recognition architectures are composed of one or
two such stages, followed by a classifier, generally a multi-
nomial logistic regression.
FCSG − PA This is the basic building block of tra-
ditional convolutional networks, alternating tanh-squashed
filter banks with average down-sampling layers [14, 10].
A complete convolutional network would have several se-
quences of “FCSG - PA” followed by by a linear classifier.
FCSG − Rabs − PA The tanh-squashed filter bank is
followed by an absolute value non-linearity, and by an av-
erage down-sampling layer.
FCSG − Rabs − N − PA The tanh-squashed filter bank
is followed by an absolute value non-linearity, by a lo-
cal contrast normalization layer and by an average down-
sampling layer.
FCSG − PM This is also a typical building block of con-
volutional networks, as well as the basis of the HMAX and
other architectures [28, 25], which alternate tanh-squashed
filter banks with max-pooling layers.

3. Training Protocol
Given a particular architecture, a number of training pro-

tocols have been considered and tested. Each protocol is
identified by a letter R,U,R+, or U+. A single letter (e.g.
R) indicates an architecture with a single stage of feature
extraction, followed by a classifier, while a double letter
(e.g. RR) indicates an architecture with two stages of fea-
ture extraction followed by a classifier:
Random Features and Supervised Classifier - R and
RR: The filters in the feature extraction stages are set to
random values and kept fixed (no feature learning takes
place), and the classifier stage is trained in supervised mode.

where c is a small constant to prevent division by 0 
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Local Contrast Normalization 
•  Perform local contrast normalization  

 Feature Maps 
 Feature Maps after 
Contrast Normalization  

Ø  Local mean=0, Local std. = 1, “Local” is 7x7 Gaussian  



Convolutional Network  
•  These operations are inserted after the convolutions and before 
the pooling 

Filter Bank Layer - FCSG: the input of a filter bank
layer is a 3D array with n1 2D feature maps of size n2×n3.
Each component is denoted xijk, and each feature map is
denoted xi. The output is also a 3D array, y composed of
m1 feature maps of size m2 ×m3. A filter in the filter bank
kij has size l1 × l2 and connects input feature map xi to
output feature map yj . The module computes:

yj = gj tanh(
∑

i

kij ∗ xi) (1)

where tanh is the hyperbolic tangent non-linearity, ∗ is the
2D discrete convolution operator and gj is a trainable scalar
coefficient. By taking into account the borders effect, we
have m1 = n1− l1 +1, and m2 = n2− l2 +1. This layer is
denoted by FCSG because it is composed of a set of convo-
lution filters (C), a sigmoid/tanh non-linearity (S), and gain
coefficients (G). In the following, superscripts are used to
denote the size of the filters. For instance, a filter bank layer
with 64 filters of size 9x9, is denoted as: 64F 9×9

CSG.
Rectification Layer - Rabs: This module simply applies
the absolute value function to all the components of its in-
put: yijk = |xijk|. Several rectifying non-linearities were
tried, including the positive part, and produced similar re-
sults.
Local Contrast Normalization Layer - N : This module
performs local subtractive and divisive normalizations, en-
forcing a sort of local competition between adjacent fea-
tures in a feature map, and between features at the same
spatial location in different feature maps. The subtrac-
tive normalization operation for a given site xijk com-
putes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q, where wpq is

a Gaussian weighting window (of size 9x9 in our exper-
iments) normalized so that

∑
ipq wpq = 1. The divisive

normalization computes yijk = vijk/max(c,σjk) where
σjk = (

∑
ipq wpq.v2

i,j+p,k+q)
1/2. For each sample, the

constant c is set to the mean(σjk) in the experiments. The
denominator is the weighted standard deviation of all fea-
tures over a spatial neighborhood. The local contrast nor-
malization layer is inspired by computational neuroscience
models [24, 20].
Average Pooling and Subsampling Layer - PA: The pur-
pose of this layer is to build robustness to small distor-
tions, playing the same role as the complex cells in mod-
els of visual perception. Each output value is yijk =∑

pq wpq.xi,j+p,k+q, where wpq is a uniform weighting
window (“boxcar filter”). Each output feature map is then
subsampled spatially by a factor S horizontally and verti-
cally. In this work, we do not consider pooling over fea-
ture types, but only over the spatial dimensions. Therefore,
the numbers of input and output feature maps are identical,
while the spatial resolution is decreased. Disregarding the
border effects in the boxcar averaging, the spatial resolution
is decreased by the down-sampling ratio S in both direc-
tions, denoted by a superscript, so that, an average pooling

Figure 1. A example of feature extraction stage of the type FCSG−

Rabs − N − PA. An input image (or a feature map) is passed
through a non-linear filterbank, followed by rectification, local

contrast normalization and spatial pooling/sub-sampling.

layer with 4x4 down-sampling is denoted: P 4×4
A .

Max-Pooling and Subsampling Layer - PM : building lo-
cal invariance to shift can be performed with any symmetric
pooling operation. The max-pooling module is similar to
the average pooling, except that the average operation is re-
placed by a max operation. In our experiments, the pooling
windows were non-overlapping. A max-pooling layer with
4x4 down-sampling is denoted P 4×4

M .

2.1. Combining Modules into a Hierarchy
Different architectures can be produced by cascading the

above-mentioned modules in various ways. An architec-
ture is composed of one or two stages of feature extraction,
each of which is formed by cascading a filtering layer with
different combinations of rectification, normalization, and
pooling. Recognition architectures are composed of one or
two such stages, followed by a classifier, generally a multi-
nomial logistic regression.
FCSG − PA This is the basic building block of tra-
ditional convolutional networks, alternating tanh-squashed
filter banks with average down-sampling layers [14, 10].
A complete convolutional network would have several se-
quences of “FCSG - PA” followed by by a linear classifier.
FCSG − Rabs − PA The tanh-squashed filter bank is
followed by an absolute value non-linearity, and by an av-
erage down-sampling layer.
FCSG − Rabs − N − PA The tanh-squashed filter bank
is followed by an absolute value non-linearity, by a lo-
cal contrast normalization layer and by an average down-
sampling layer.
FCSG − PM This is also a typical building block of con-
volutional networks, as well as the basis of the HMAX and
other architectures [28, 25], which alternate tanh-squashed
filter banks with max-pooling layers.

3. Training Protocol
Given a particular architecture, a number of training pro-

tocols have been considered and tested. Each protocol is
identified by a letter R,U,R+, or U+. A single letter (e.g.
R) indicates an architecture with a single stage of feature
extraction, followed by a classifier, while a double letter
(e.g. RR) indicates an architecture with two stages of fea-
ture extraction followed by a classifier:
Random Features and Supervised Classifier - R and
RR: The filters in the feature extraction stages are set to
random values and kept fixed (no feature learning takes
place), and the classifier stage is trained in supervised mode.
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Remember Batch Normalization 

Learned linear transformation to adapt to non-linear 
activation function (𝛾 and β are trained)  and β are trained) 


